Self-Organized-Expert Modular Network for Classification of Spatiotemporal Sequences
نویسندگان
چکیده
We investigate a form of modular neural network for classification with (a) pre-separated input vectors entering its specialist (expert) networks, (b) specialist networks which are selforganized (radial-basis function or self-targeted feedforward type) and (c) which fuses (or integrates) the specialists with a single-layer net. When the modular architecture is applied to spatiotemporal sequences, the Specialist Nets are recurrent; specifically, we use the Input Recurrent type. The Specialist Networks (SNs) learn to divide their input space into a number of equivalence classes defined by self-organized clustering and learning using the statistical properties of the input domain. Once the specialists have settled in their training, the Fusion Network is trained by any supervised method to map to the semantic classes. We discuss the fact that this architecture and its training is quite distinct from the hierarchical mixture of experts (HME) type as well as from stacked generalization. Because the equivalence classes to which the SNs map the input vectors are determined by the natural clustering of the input data, the SNs learn rapidly and accurately. The fusion network also trains rapidly by reason of its simplicity. We argue, on theoretical grounds, that the accuracy of the system should be positively correlated to the product of the number of equivalence classes for all of the SNs. This network was applied, as an empirical test case, to the classification of melodies presented as direct audio events (temporal sequences) played by a human and subject, therefore, to biological variations. The audio input was divided into two modes: (a) frequency (or pitch) variation and (b) rhythm, both as functions of time. The results and observations show the technique to be very robust and support the theoretical deductions concerning accuracy.
منابع مشابه
معرفی شبکه های عصبی پیمانه ای عمیق با ساختار فضایی-زمانی دوگانه جهت بهبود بازشناسی گفتار پیوسته فارسی
In this article, growable deep modular neural networks for continuous speech recognition are introduced. These networks can be grown to implement the spatio-temporal information of the frame sequences at their input layer as well as their labels at the output layer at the same time. The trained neural network with such double spatio-temporal association structure can learn the phonetic sequence...
متن کاملطبقه بندی و شناسایی رخسارههای زمینشناسی با استفاده از دادههای لرزه نگاری و شبکههای عصبی رقابتی
Geological facies interpretation is essential for reservoir studying. The method of classification and identification seismic traces is a powerful approach for geological facies classification and distinction. Use of neural networks as classifiers is increasing in different sciences like seismic. They are computer efficient and ideal for patterns identification. They can simply learn new algori...
متن کاملSpatiotemporal characterization of paced cardiac activation with body surface potential mapping and self-organizing maps.
In this study self-organizing maps (SOM) were utilized for spatiotemporal analysis and classification of body surface potential mapping (BSPM) data. Altogether 86 cardiac depolarization (QRS) sequences paced by a catheter in 18 patients were included. Spatial BSPM distributions at every 5 ms over the QRS complex were first presented to an untrained SOM. The learning process of the SOM units org...
متن کاملSelf-Organization of Modules and Their Hierarchy in Robot Learning Problems: A Dynamical Systems Approach
This paper describes how the internal representation of the world can be selforganized in modular and hierarchical ways in a neural network architecture for sensory-motor systems. We develop an on-line learning scheme { the so-called mixture of recurrent neural net (RNN) experts { in which a set of RNN modules becomes self-organized as experts in multiple levels in order to account for the di e...
متن کاملGDOP Classification and Approximation by Implementation of Time Delay Neural Network Method for Low-Cost GPS Receivers
Geometric Dilution of Precision (GDOP) is a coefficient for constellations of Global Positioning System (GPS) satellites. These satellites are organized geometrically. Traditionally, GPS GDOP computation is based on the inversion matrix with complicated measurement equations. A new strategy for calculation of GPS GDOP is construction of time series problem; it employs machine learning and artif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Intell. Data Anal.
دوره 2 شماره
صفحات -
تاریخ انتشار 1998